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Acinetobacter species and Pseudomonas aeruginosa are noted for their intrinsic resistance to antibiotics and

for their ability to acquire genes encoding resistance determinants. Foremost among the mechanisms of

resistance in both of these pathogens is the production of b-lactamases and aminoglycoside-modifyingenzymes.

Additionally, diminished expression of outer membrane proteins, mutations in topoisomerases, and up-reg-

ulation of efflux pumps play an important part in antibiotic resistance. Unfortunately, the accumulation of

multiple mechanisms of resistance leads to the development of multiply resistant or even “panresistant” strains.

The emergence and spread of antibiotic-resistant bac-

teria causing infection is of great concern to clinicians.

Since the seminal description of a penicillin-inactivat-

ing enzyme in Escherichia coli, the fierce 75-year struggle

against these bacteria has been aptly referred to as an

“unwinnable war” (Wellcome Trust Web site [available

at: http://www.wellcome.ac.uk]) [1]. Recent clinical at-

tention has focused on the increasing frequency of non–

lactose-fermenting gram-negative pathogens responsi-

ble for hospital-acquired infections [2]. In this group,

Acinetobacter species and Pseudomonas aeruginosa are

emerging as pathogens that frequently cause infections

in patients in intensive care units [3]. In both genera

of bacteria, resistance to multiple classes of antibiotics

seriously compromises our ability to treat patients who

are infected with these pathogens. In many instances,

there are perilously few antibiotic choices. Hence, for

the immunocompromised host, timely institution of

effective therapy is a matter of survival. In this review,

we highlight the molecular basis for antibiotic resistance

in Acinetobacter species and P. aeruginosa (table 1).

Once these mechanisms are understood, clinicians may

seek to devise interventions that will translate into a

“truce” in this inexorable struggle.
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ANTIBIOTIC RESISTANCE
IN ACINETOBACTER BAUMANNII

AmpC cephalosporinases. Numerous b-lactamases

have been described in A. baumannii. The chromoso-

mally encoded cephalosporinase (AmpC type) is com-

mon to all strains of A. baumannii. Evidence has ac-

cumulated that these cephalosporinases are genetically

related [4–12]. Furthermore, phylogenetic analysis sug-

gests that this cephalosporinase should be placed in a

unique subgroup among the class C b-lactamases [13].

To date, there has been no evidence to indicate that the

chromosomal cephalosporinase is inducible [13]. Re-

cently, insertion sequences (ISs) have been found that

increase production of the chromosomal b-lactamase

of A. baumannii (a 1200-bp sequence described by Cor-

vec et al. [7], ISAba1 [14], and IS1135 [15]). In a study

by Segal et al. [14], a cephalosporinase of A. baumannii

is transcribed from a promoter contained within a pu-

tative IS element in Acinetobacter species.

Other b-lactamases. In addition to the class C

cephalosporinase discussed above, other b-lactamases

have been reported in A. baumannii. These include the

TEM-1 type [6, 16], SHV type [17, 18], CTX-M type

[19], PER-1 [20–22], and VEB-1 [23, 24] b-lacta-

mases. Although they are important, it is difficult to

assess their impact on resistance in the presence of the

AmpC cephalosporinase.

Serine and metallo–b-lactamases (carbapenemases).

The most problematic recent occurrence is the emer-

gence of numerous OXA enzymes in A. baumannii
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Table 1. Mechanisms of antibiotic resistance in Acinetobacter
species and Pseudomonas aeruginosa.

Mechanism
Acinetobacter

species P. aeruginosa

b-Lactamases
AmpC cephalosporinase + �

Inducible � +
TEM + +
SHV + +
CTX-M + �

PER + +
VEB + +
OXAa + +
IMP + +
VIM + +
SPM � +
GIM � +
PSE � +
GES � +
IBC � +

OMP changes + +
AMEs

Adenylating + +
Phosphorylating + +
Acetylating + +

Topoisomerase mutations
gyrA + +
parC + +

Efflux pumps + +
Mobile genetic elements + +
Integrons + +
Membrane changes and resistance

to polymyxin � +

NOTE. +, present; �, absent; AME, aminoglycoside-modifying enzyme;
ESBL, extended-spectrum b-lactamase; OMP, outer membrane protein.

a OXA b-lactamases are of 2 types: carbapenemases (found in Acinetobacter
species) and ESBL-type (found in P. aeruginosa).

that confer b-lactam resistance [25]. Of note, the use of car-

bapenems to treat A. baumannii infection has also resulted in

outbreaks of infection with carbapenem-resistant Acinetobacter

species [26–28]. The first description of a serine carbapenemase

in A. baumannii was ARI-1 (OXA-23), a clinical isolate from

a blood culture at the Royal Infirmary in Edinburgh, Scotland,

in 1985 [29]. Although OXA carbapenemases may not robustly

hydrolyze imipenem, their presence in an organism that may

have an IS element that acts as a promoter can result in imi-

penem resistance [30].

Many OXA b-lactamases are found as part of integrons [31–

34]. Integrons are genetic elements of variable length that con-

tain a 5′ conserved integrase gene (int), gene cassettes, and an

integration site for the gene cassette, attI. Three main classes

of integrons have been described in Acinetobacter. In the class

1 integrons, the most common in Acinetobacter species, the 3′

conserved segment may include multiple open reading frames;

qacED1, a deletion derivative of the antiseptic resistance gene

qacE; and sul1, a sulfonamide resistance gene (figure 1).

Two major metallo–b-lactamases have been reported in A.

baumannii: IMP and VIM type. VIM-2 b-lactamases detected

in A. baumannii isolates from Korea confer significant levels

of resistance to carbapenems [35–37]. This blaVIM-2 gene is lo-

cated on 2 newly described integrons (class I integrons In105

and In106) [35]. IMP type metallo–b-lactamases (IMP-1, -2,

-5, -6, -11) are also being reported with increasing frequency

[35, 37, 38]. Walsh et al. [37] summarize the genetic environ-

ment, classification, and biochemistry of this emerging threat

and point out that many metallo–b-lactamases are found in

class 1 integrons that are part of transposons (see below).

Outer membrane protein (OMP [porin]) changes. By re-

duction of transport into the periplasmic space via changes in

porins or OMPs, access to penicillin-binding proteins is re-

duced. With less b-lactam entering the periplasmic space, the

weak enzymatic activity of the b-lactamase is amplified. Many

outbreaks of infection with imipenem-resistant A. baumannii

are due to porin loss. Quale et al. [39] found that carbapenem-

resistant isolates of A. baumannii had reduced expression of

47-, 44-, and 37-kDa OMPs. Similarly, Clark [40] found de-

creased expression of a 33- to 36-kDa protein in 2 imipenem-

resistant strains of A. baumannii (A-1 and A-24). In a study

by Bou et al. [16], the reduced expression of 2 porins and the

presence of an OXA-derived b-lactamase were responsible for

the carbapenem resistance of the epidemic nosocomial imi-

penem-resistant A. baumannii isolates. Similarly, Limansky et

al. [41] have shown that the loss of a heat-modifiable 29-kDa

OMP, designated CarO, was responsible for imipenem resis-

tance (the 2 genetically related strains studied were Ab288 [im-

ipenem susceptible] and Ab242 [imipenem resistant]) and that

loss of this OMP could be readily obtained by serial passage.

Aminoglycoside-modifying enzymes (AMEs). Resistance to

aminoglycosides by AMEs is also a major unwelcome feature

in the multidrug-resistant phenotype of A. baumannii [18]. All

3 types of AMEs—the acetylating, adenylating, and phospho-

rylating AMEs—have been identified in A. baumannii [18, 42,

43]. Contemporary genetic analyses have been devoted to in-

vestigating the nature of these AMEs, since many of them have

been encoded on integrons.

Quinolone resistance. Molecular analysis of a collection of

quinolone-resistant A. baumannii isolates by Vila et al. [44, 45]

revealed that mutations in both in gyrA and parC are respon-

sible for quinolone resistance. The plasmid-mediated quinolone

resistance gene, qnrA, has not yet been detected in A. bau-

mannii, although it has been found in other gram-negative

bacteria, such as Enterobacter and Klebsiella species [46]. The

Qnr protein protects DNA from quinolone binding [47].

Efflux pump. The natural role of efflux is to remove chem-
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Figure 1. Simplified representation of a class 1 integron. attI, integration site; attC, sequence in the gene cassette recognized by the integrase; P,
promoter; P1, promotor for the gene cassette; P2, second promoter; Pint, promoter for the integrase; orf, open reading frame; qacED1, partially deleted
gene that encodes resistance to a quartenary ammonium compound; sulI, gene for sulfonamide resistance. As pictured, integrons contain components
of a site-specific recombination system that recognizes and captures mobile gene cassettes. Gene cassettes can be antibiotic resistance genes followed
by a repeat sequence called a 59-bp element (59be) or attC. In Acinetobacter baumannii, gene cassettes may contain b-lactamase genes (e.g., blaIMP-2,
blaIMP-4, blaVIM-1, and blaOXA).

icals that could potentially disorganize the cytoplasmic mem-

brane; however, from the point of view of antibiotic resistance,

efflux pumps have a potent ability to actively expel b-lactams,

quinolones, and sometimes even aminoglycosides. Efflux pumps

usually have 3 components: the pump itself, which lies in the

cytoplasmic membrane; an exit portal (porin channels traversing

the outer membrane); and a linker lipoprotein between the two.

An RND-type efflux pump has been described in A. baumannii

[48, 49]. By inactivation of adeB, it was shown that this efflux

pump was responsible for aminoglycoside resistance and was

involved in resistance to quinolones, tetracyclines, chloram-

phenicol, erythromycin, trimethoprim, and ethidium bromide.

Marchand et al. [49] showed that the AdeABC pump is cryptic

in wild-type A. baumannii because of stringent control by a 2-

component regulatory and sensor system.

ANTIBIOTIC RESISTANCE IN P. AERUGINOSA

AmpC cephalosporinase. AmpC cephalosporinase is char-

acteristically chromosomally encoded in P. aeruginosa. Some

antibiotics, such as the carbapenems, are strong inducers of

this b-lactamase but are, fortunately, stable to its hydrolytic

effects. Interestingly, clavulanate can induce expression of the

AmpC b-lactamase, resulting in antagonism of the bactericidal

activity of ticarcillin [50, 51]. This has led some authors to

suggest that ticarcillin-clavulanate be avoided when selecting

an antipseudomonal b-lactam antibiotic [50]. Tazobactam does

not induce hyperproduction of the AmpC b-lactamase [50].

Most importantly, antibiotic therapy selects derepressed mu-

tants that permanently hyperproduce AmpC b-lactamase. Sta-

bly derepressed mutants that hyperproduce the AmpC b-lac-

tamase may lead to resistance to ticarcillin, piperacillin, and

third-generation cephalosporins [52].

PSE b-lactamases. P. aeruginosa has the ability to acquire

a wide range of b-lactamases. Four PSE enzymes have been

reported in P. aeruginosa: PSE-1 (CARB-2), PSE-4 (CARB-1),

CARB-3, and CARB-4 [53–56]. The PSE-1 and PSE-4 enzymes

are active against penicillins and are inhibited by currently avail-

able b-lactamase inhibitors but do not inactivate the antipseu-

domonal cephalosporins, carbapenems, or aztreonam.

OXA b-lactamases. Although OXA b-lactamases have also

been reported in other gram-negative isolates, they occur pre-

dominantly in P. aeruginosa and Acinetobacter species (see

above) [25, 33, 34, 57–71]. More recently, OXA-type b-lacta-

mases with broader activity than earlier enzymes have been

described. In many ways, the newer OXA-type b-lactamases

have similarities with the extended-spectrum b-lactamases

(ESBLs), which typically have minor sequence substitutions

compared with the genes of parent b-lactamases. These se-

quence changes greatly increase the spectrum of activity of the

b-lactamases against antibiotics such as ceftazidime or az-

treonam. OXA-10 mutants have ESBL activity and can hydro-

lyze third-generation cephalosporins and aztreonam [64]. Some

mutants can hydrolyze cefepime to a much greater extent than

they do ceftazidime; OXA-31 is one such example [70].

TEM-, SHV-, and other class A–type b-lactamases. TEM-

and SHV-type b-lactamases have been described in P. aerugi-

nosa, but very rarely [72–77]. To our knowledge, the CTX-M

type ESBLs, which are now emerging as a dominant ESBL type,

have never been described in P. aeruginosa [78].

PER-1 has been found to occur in P. aeruginosa [79, 80] and

has been found in ∼10% of nosocomial P. aeruginosa isolates

in Turkish hospitals [20]. The presence of PER-1 b-lactamase–

producing P. aeruginosa has also been reported from countries

other than Turkey [81, 82], and nosocomial outbreaks of in-

fection with multidrug-resistant strains producing PER-1 have

also been described [83, 84]. A recent report describes poor

therapeutic outcomes associated with the expression of PER-1

in P. aeruginosa [85]. PER-1 shows a broad substrate profile,

in that it hydrolyzes benzylpenicillin, amoxicillin, ticarcillin,

cephalothin, cefoperazone, cefuroxime, ceftriaxone, ceftazi-

dime, and (moderately) aztreonam but not oxacillin, imipenem,

or cephamycins.

Other less common ESBLs, such as those of VEB, GES, and

IBC type, have been detected in P. aeruginosa isolates. VEB-1
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was identified in France, in a patient who had likely imported

the strain from Thailand [86]. Similar strains were recently

reported from Thailand and Kuwait [77, 87, 88]. GES-1, pre-

viously described in an integron from Klebsiella pneumoniae,

has recently been described in P. aeruginosa [89]. GES-2 is a

point-mutant derivative of the ESBL GES-1. GES-2 was iden-

tified from a P. aeruginosa isolate in South Africa and later from

8 more strains involved in the outbreak [90, 91]. An ESBL,

IBC-2, produced by a clinical strain of P. aeruginosa, was found,

as a gene cassette, to be the sole gene within the variable region

of a class 1 integron probably located in the chromosome. IBC-

2 is a variant of IBC-1 (originally found in Enterobacter cloacae)

and GES-1 (originally found in K. pneumoniae), differing by 1

aa from each of these b-lactamases [92]. These ESBLs share

the ability to render inactive the third-generation cephalospo-

rins, penicillins, and aztreonam. In the vast majority of situ-

ations, they do not affect the carbapenems. However, GES-2

can hydrolyze imipenem (but not meropenem) [90].

Metallo-carbapenemases. In general, carbapenem resis-

tance in P. aeruginosa attributed to b-lactamases is due to me-

tallo–b-lactamases. The major types that have been identified

are IMP, VIM, SPM, and GIM [93, 94]. The production of

these metallo–b-lactamases by P. aeruginosa can lead to resis-

tance to imipenem and meropenem plus the antipseudomonal

cephalosporins, including cefepime, and antipseudomonal pen-

icillins [93]. These b-lactamases do not destroy aztreonam.

These carbapenemases are not inhibited by clavulanic acid, ta-

zobactam, or sulbactam; hence, addition of tazobactam to pi-

peracillin or clavulanic acid to ticarcillin does not add to the

activity of these penicillins against metallo–b-lactamase–pro-

ducing strains.

The IMP and VIM b-lactamases share !40% amino acid

identity but exhibit comparable kinetic properties, inactivating

virtually all b-lactams except monobactams [93]. Additionally,

both blaIMP- and blaVIM-type genes are carried as gene cassettes

by class 1 integrons. SPM is a distinctly different metallo–b-

lactamase from VIM and IMP and, accordingly, represents a

new subfamily of mobile metallo–b-lactamases. However, SPM-

1 appears to preferentially hydrolyze cephalosporins, although

the hydrolytic profile of SPM-1 bears the most similarity to

that of IMP-1 [95].

IMP-1 was first reported in Serratia marcescens and P. aeru-

ginosa isolates [96–98]. The IMP-type b-lactamases have a truly

global distribution [99–101].

Even though VIM enzymes have !40% amino acid homology

with the IMP enzymes, they have the same antibiotic spectrum

profile [93]. VIM-1 was the first to be identified in P. aeruginosa

[102]. Numerous outbreaks of infection with VIM-2 have since

been described [84, 103–114]. Most recently, a nosocomial out-

break of infection with VIM-2–producing P. aeruginosa oc-

curred in Chicago [115].

OMP (porin) changes. Despite the occurrence of carbape-

nemases, the most common means by which P. aeruginosa isolates

become imipenem resistant is via mutational loss of a 54-kDa

OMP [116]. This protein is usually known as OprD (or the D2

porin). Loss of OprD production is likely due to inactivation of

the OprD gene [117]. Loss of OprD causes imipenem resistance;

isolates that have lost OprD will have reduced susceptibility to

meropenem, although this does not usually lead to resistance as

defined by conventional break points. Loss of OprD does not

confer resistance to b-lactams other than the carbapenems. Mu-

tational loss of OprD is frequent during imipenem therapy: in

a variety of clinical studies, imipenem resistance has emerged

during treatment of P. aeruginosa infections in ∼25% of patients

treated with that drug [118–121].

AMEs. An increasing complexity of aminoglycoside resis-

tance mechanisms is being observed in P. aeruginosa, including

impermeability, multidrug active efflux systems, and enzymatic

modification of the amino or hydroxyl groups of the amino-

glycosides [122]. As in Acinetobacter species, AMEs are common

in P. aeruginosa, especially AAC(6′)-I and APH(3′)-II [123, 124],

but are not the sole mechanism of aminoglycoside resistance.

Novel aminoglycoside resistance gene cassettes are being discov-

ered; in the worst-case scenario, these are being discovered within

integrons that also encode metallo–b-lactamases [86].

Quinolone resistance. As in Acinetobacter species, quino-

lone resistance may be attributable to mutation in the regulator

genes for the efflux system or to mutations of the target en-

zymes—topoisomerases II and IV (encoded by gyrA and parC,

respectively). However, it seems that mutations in the genes

encoding the topoisomerases (especially gyrA) are the most

important. Both high- and low-level ciprofloxacin resistance

are associated with a mutation in gyrA. Mutations in parC are

found in highly resistant isolates when joined with mutations

in gyrA. Mutations in the efflux regulatory genes are associated

with high-level resistance only when they appear together with

a mutation in gyrA or parC [125].

Efflux pumps. Efflux pump systems are emerging as ex-

tremely important causes of multidrug resistance in P. aeruginosa

[126]. The terminology of the commonly observed efflux pump

system in P. aeruginosa is logical, in that the name is a compound

of the designations for the pump, the linker lipoprotein, and the

exit portal. For example, the most commonly observed pump

system, MexAB-OprM, comprises a pump (MexB), a linker li-

poprotein (MexA), and an exit portal (OprM).

The MexAB-OprM system, when up-regulated, leads to re-

sistance to the quinolones, the antipseudomonal penicillins,

and the antipseudomonal cephalosporins. Meropenem suscep-

tibility may decrease, but imipenem susceptibility is usually not

affected. This is a key discriminating factor. Aminoglycoside

susceptibility is not affected by this pump [126]. In contrast,

up-regulation of the MexXY-OprM efflux pump system does
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affect aminoglycoside susceptibility. The MexXY-OprN efflux

pump system is unusual, in that it is coregulated with OprD.

Mutants with up-regulated MexXY-OprN and with reduced

OprD will be resistant to multiple drugs, including both imi-

penem and meropenem, quinolones, antipseudomonal peni-

cillins, aztreonam, and antipseudomonal cephalosporins [127].

Membrane changes and resistance to polymyxins. Resis-

tance to colistin in P. aeruginosa (and A. baumannii) is rare

but has been found [100]. Structural modifications of the outer

cell membrane are thought to be responsible for high-level

resistance of P. aeruginosa to colistin [128]. Such changes in-

clude the absence of 2-hydroxylaurate, the presence of 4-ami-

noarabinose, and an increase in the palmitate content of lipid

A. More research is needed to adequately characterize mech-

anisms of polymyxin resistance.

Panresistance. Resistance to all antibiotics except the poly-

myxins is now a reality in many medical centers. Panresistance

typically is the result of the convergence of multiple resistance

mechanisms. Deplano et al. [129] described an outbreak of

panresistant P. aeruginosa in an intensive care unit in Belgium.

The isolates overexpressed the chromosomal b-lactamase

AmpC and had decreased expression of the porin OprD. Ad-

ditionally, up-regulation of the MexXY efflux system was pres-

ent. Lolans et al. [115] described an outbreak of panresistance

in P. aeruginosa in an intensive care unit in Chicago. The isolates

produced a metallo–b-lactamase enzyme (VIM-2), the chro-

mosomally encoded AmpC b-lactamase, and the genes encod-

ing 2 AMEs (aacA7 and aacC-A5). The isolates were variably

resistant to aztreonam—metallo-enzymes do not hydrolyze az-

treonam. However, the coexistence of other resistance mech-

anisms is likely to compromise susceptibility to aztreonam.

WHY RESISTANCE TO SO MANY ANTIBIOTICS?

Perhaps the intrinsic impermeability of their outer membranes

coupled with the close relationship of A. baumannii and P.

aeruginosa to the soil and aquatic environment has made it

possible for these organisms to acquire highly effective resis-

tance determinants in response to multiple challenges. In a

study by D’Costa et al. [130], the soil was demonstrated to be

a reservoir of resistance genes (the “antibiotic resistome”). In

Acinetobacter calcoaceticus, the permeability coefficients of zwit-

terionic cephalosporins were 2–7 times lower than the per-

meability coefficients of the same b-lactams in the outer

membrane of P. aeruginosa [131]. The diffusion rates of car-

bapenems and zwitterionic cephalosporins into liposomes con-

taining purified outer membrane appeared to be ∼1%–3%, that

of the E. coli outer membrane. It remains to be established

whether the same mechanism is operating in A. baumannii. We

believe that the ability of this pathogen to harbor diverse genetic

elements parallels the experience with P. aeruginosa. Genome-

wide analysis will provide critical insights into this ability.
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