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Emerging opportunistic yeast infections
Marisa H Miceli, José A Díaz, Samuel A Lee

A growing population of immunosuppressed patients has resulted in increasingly frequent diagnoses of invasive 
fungal infections, including those caused by unusual yeasts. The incidence of non-albicans species of Candida is 
increasing compared with that of Candida albicans, and several species, such as Candida glabrata and Candida krusei, 
may be resistant to azole antifungal therapy. Trichosporon species are the second most common cause of fungaemia in 
patients with haematological malignant disease and are characterised by resistance to amphotericin and echinocandins 
and poor prognosis. Rhodotorula species belong to the family Cryptococcaceae, and are a cause of catheter-related 
fungaemia, sepsis, and invasive disease in severely immunosuppressed patients. An increasing number of sporadic 
cases of invasive fungal infections by non-neoformans cryptococci have been reported in immunocompromised 
hosts, especially for patients with advanced HIV infection or cancer who are undergoing transplant. Other uncommon 
yeasts that can cause invasive disease in severely immunosuppressed patients include Geotrichum, Hansenula, 
Malassezia, and Saccharomyces. Host immune status is a crucial determinant of the type of invasive fungal infection a 
patient is at risk for. Diagnosis can be challenging and relies heavily on traditional cultures of blood and other sterile 
sites, although serum (1,3)-β-D-glucan testing might have an adjunctive role. Although rare yeasts are emerging as 
opportunistic human pathogens, diagnosis remains challenging and treatment suboptimal.

Introduction
Candida albicans is the predominant cause of invasive 
fungal infections from yeasts.1,2 Nevertheless, the 
epidemiology of yeast infections is rapidly evolving and 
non-albicans Candida species and other rare yeasts have 
emerged as major opportunistic pathogens (panel). 
Horn and colleagues1 showed that prevalence of 
candidaemia caused by non-albicans Candida species 
was 54·4%. Other yeasts that are less common than 
candida have been associated with life-threatening 
infections in immunocompromised hosts.3–6 Although 
the importance of these emerging opportunistic yeasts 
is recognised, little is known about present 
epidemiological traits of these pathogens. Indeed, these 
pathogens are frequently diffi  cult to identify by 
phenotypic methods and show variable susceptibility 
profi les to antifungal drugs.7,8 We address the 
epidemiological, diagnostic, and therapeutic aspects of 
emerging yeast infections.

Emerging yeasts
Non-albicans Candida species
Although C albicans is the most common cause of 
invasive fungal infections in hospital settings, the growing 
number of new infections from non-albicans Candida 
species is increasingly recognised as a major source of 
infection. In most surveys and treatment studies in the 
USA, Candida glabrata is the second most common 
Candida species leading to invasive fungal infections. The 
ARTEMIS Global Antifungal Surveillance Program9 
showed that C albicans was the most common (63–70%) 
candidal cause of invasive fungal infections, followed by 
C glabrata (44%), Candida tropicalis (6%), and 
Candida parapsilosis (5%).9 However, geographical and 
institutional diff erences are widely reported, and, outside 
of the USA, C glabrata is less frequently isolated.10 For 
example, in Brazil,11 C tropicalis and C parapsilosis are the 
second and third most common Candida species, 

respectively, whereas in Australia,12 C parapsilosis and 
C glabrata are the next most common species. Worldwide, 
C tropicalis and C parapsilosis have increased in prevelance, 
as have rarer species such as Candida guilliermondii, 
Candida pelliculosa, Candida kefyr, Candida rugosa, and 
Candida famata.7,13–17

C parapsilosis is one of the principal causes of invasive 
candidosis. Individuals at the highest risk for severe 
infection are neonates and patients in intensive care 
units. C tropicalis and Candida krusei are key causes of 
invasive fungal infections in patients undergoing bone 
marrow or stem-cell transplantation, and in patients with 
malignant haematological disease.18,19 Pfaller and coll-
eagues20 reported in a surveillance study that 
C guilliermondii and C rugosa were most prevalent in 
Latin America, whereas Candida inconspicua and 
Candida norvegensis were most abundant in eastern 
Europe. C kefyr is notable for outbreaks in haematology 
wards, and has been identifi ed in dairy products.15,21 An 
increasing number of less-common Candida species that 
lead to infections in people have been identifi ed, 
including Candida orthopsilosis, Candida metapsilosis, and 
Candida nivariensis.7,22 European studies23,24 have 

Panel: Synonyms of yeast species mentioned in this Review

• Hansenula (Pichia)
• Candida krusei (Pichia kudriavzevii)
• Candida guilliermondii (Meyerozyma guilliermondii)
• Candida pelliculosa (Wickerhamomyces anomalus)
• Candida kefyr (Kluyveromyces marxianus)
• Candida norvegensis (Pichia norvegensis)
• Cryptococcus humicolus (Asterotremella humicola)
• Cryptococcus uniguttulatus (Filobasidium uniguttulatum)
• Geotrichum capitatum (Dipodascus capitatus)
• Hansenula anomala and Pichia anomala 

(both Wickerhamomyces anomalus)
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also reported the role of C nivariensis as a human patho-
gen that can be acquired from hospital gardens or 
potted plants.

Candida species usually exist as commensals in the 
gastrointestinal tract and genital tract of healthy hosts, 
but they are also opportunistic pathogens that have the 
ability to cause various superfi cial and systemic infections. 
Yeast forms of candida are unicellular, reproduce by 
budding, and grow well in routine automated blood 
culture bottles and on agar plates. C glabrata grows 
smaller, elliptical, unicellular budding yeasts than do 
C albicans, C krusei, C parapsilosis, and C tropicalis.

One of the main reasons for candida’s virulence is its 
versatility in adaptation to various diff erent habitats, and 
the formation of biofi lms that enhance its ability to adhere 
to surfaces and cause infection.25 Biofi lm cells are 
organised into structured communities embedded within 
a matrix of extracellular material.25 C albicans forms fungal 
biofi lms most often, but non-albicans Candida species are 
also indicated in biofi lm-associated infections. Silva and 
colleagues26 showed that non-albicans Candida species 
can form biofi lms, although they were less widespread for 
C glabrata than they were for C parapsilosis or C tropicalis. 
In the same study,26 production of C parapsilosis biofi lms 
was very dependent on strain, a feature that was not 
observed with C glabrata and C tropicalis.

Candida species become pathogens when the host’s 
resistance to infection is impaired locally or systemically. 
For example, neutropenia, neutrophil dysfunction, and 
disruption of mucosal barriers are the main risk factors 
for disseminated infections. In an immunocompromised 
host, translocation from the gastrointestinal tract and 
intravascular catheters are the two main portals of entry 
for disseminated candida infection.

Although Candida species are regular fl ora in the 
gastrointestinal and genitourinary tracts of human beings, 
they have the propensity to invade and cause disease when 
an imbalance is created in their ecological niche. Immune 
response of the host is a key determinant of the type of 
infection caused by Candida species. Clinical manifestations 
of infection with Candida species range from localised 
superfi cial involvement to deep organ involvement and 
disseminated infection. Invasive focal infections, such as 
pyelonephritis, endocarditis, and meningitis, most often 
occur after haematogenous candidosis.

Resistance of non-albicans candida isolates to available 
antifungal drugs is a major challenge for future empirical 
therapeutic and prophylactic strategies (table). Azole 
resistance is a potential issue with C glabrata, C krusei, 
and other uncommon species. C guilliermondii shows 
reduced susceptibility to fl uconazole (75% susceptibility), 
but is largely susceptible to voriconazole (91%).27 C rugosa 
isolates are 40·5% susceptible to fl uconazole and 61·4% 
to voriconazole.28 Candida lusitaniae can develop 
secondary resistance to amphotericin,29 and 
Candida dubliniensis can develop stable fl uconazole 
resistance, especially in patients with HIV/AIDS.30 

Clinical isolates of C nivariensis have shown cross-
resistance to azoles.7

Nevertheless, nearly all global clinical isolates of Candida 
species are susceptible to echinocandins,31 although there 
have been some reports32 of reduced susceptibility or 
resistance to these antifungals in the setting of severe 
immunosuppression, recurrent candidaemia, and 
prolonged exposure to echinocandins. C glabrata, 
C parapsilosis, Candida lipolytica, C lusitaniae, and C tropicalis 
can cause breakthrough mycoses despite prophylactic or 
therapeutic use of echinocandins.33

C parapsilosis is usually susceptible to echinocandins in 
a clinical setting, but often has a higher minimum 
inhibitory concentration for caspofungin, and failure of 
caspofungin treatment can occur.31,34 

Biofi lm formation is a major challenge to treatment of 
candida infections related to biomaterial. However, in 
many critically ill patients with biomaterial-related or 
catheter-related candida infections, removal or 
replacement of the infected device is diffi  cult or very risky. 
In addition to standard antifungal therapy, alternative 
strategies have been proposed for the conservative 
management of complications associated with a central 
venous catheter, including use of antibiotic lock therapy,35 
although more data are needed before this strategy can be 
recommended.

Trichosporon species
Trichosporon was the third most commonly isolated non-
candidal yeast from clinical specimens in the ARTEMIS 
Global Antifungal Surveillance Program (10·7% of 
8821 isolates).9 Invasive fungal infection caused by 
Trichosporon species is the second most common cause of 
yeast fungaemia in patients with malignant haematological 
disease (after Candida species). The main Trichosporon 
species leading to invasive fungal infections are 
Trichosporon asahii, Trichosporon asteroides, Trichosporon 
cutaneum, Trichosporon inkin, Trichosporon mucoides, and 
Trichosporon ovoides (formerly all classifi ed as 
Trichosporon beigelii).36

Trichosporon is a basidiomycetous yeast genus that 
produces septate hyphae, arthroconidia, yeasts, and 
pseudohyphae. Presence of blastoconidia with hyphae 
diff erentiates Trichosporon from Geotrichum. Because of 
shared antigens that are cross-reactive with the capsular 
antigen of Cryptococcus neoformans, a positive cryptococcal 
latex test can occur in patients with disseminated 
trichosporon infection.37

Trichosporon species can be found in soil and fresh 
water, and are part of the normal fl ora of the human skin 
and gastrointestinal tract. Infection can be superfi cial, 
subcutaneous, or systemic. T ovoides causes white piedra, 
which is a superfi cial infection occurring most commonly 
in tropical and subtropical regions. Trichosporon dermatis 
and T asahii are associated with summer-type 
hypersensitivity pneumonitis, which is a disease reported 
mostly in Japan.38
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Invasive trichosporon infection has been increasingly 
identifi ed during the past 30 years. Most cases occur in 
patients with haematological diseases, particularly those 
patients with acute leukaemia.6 Invasive trichosporon 
infection has been shown to occur in patients with 
extensive burns, AIDS, chronic corticosteroid use, and 
heart valve surgery.6,39 Fungaemia, including catheter-
related fungaemia, is the most frequent presentation of 
invasive trichosporon infection, and can occur as a 
breakthrough invasive fungal infection on antifungal 
therapy with high mortality.4 Clinical features of 
disseminated infection include positive blood cultures, 
renal failure, pulmonary infi ltrates, skin lesions, and 
chronic hepatic disease.40

Amphotericin lacks fungicidal activity against 
trichosporon, and in-vitro susceptibility to this drug is 
variable; fl ucytosine and echinocandins are ineff ective 
against trichosporon infections (table).41,42 Clinical and 
in-vitro studies9,41,43 suggest that azoles, especially 
voriconazole and posaconazole, have greatest eff ectiveness 
against trichosporon. T mucoides, T inkin, and T ovoides 

seem to be much more susceptible to fl uconazole than 
are T asahii (T beigelii) or T cutaneum. Voriconazole has 
very good activity against Trichosporon species, apart from 
T beigelii or T cutaneum.9 However, prognosis is poor 
without recovery of immune function.44

Rhodotorula species
Rhodotorula species are emerging opportunistic 
pathogens, particularly in immunocompromised 
patients. In the ARTEMIS surveillance project,9 
Rhodotorula species were the fourth most common non-
candidal yeasts isolated from clinical specimens (4·2% of 
8821 isolates). Rhodotorula infections occur worldwide 
but are most frequently isolated in the Asia−Pacifi c 
region (48·8%). Rhodotorula mucilaginosa (also known as 
Rhodotorula rubra) is the most common cause of 
Rhodotorula species fungaemia, followed by 
Rhodotorula glutinis and Rhodotorula minuta.9,45 Overall 
mortality from rhodotorula fungaemia is 15%.45 Patients 
with cancer (including those undergoing bone marrow 
transplantations) and patients with AIDS are at highest 

Azoles Polyenes Echinocandins

Fluconazole Voriconazole Amphotericin formulations Caspofungin

Candida species

Candida glabrata Susceptible (dose dependent) 
to resistant

Susceptible (dose dependent) 
to resistant

Susceptible to intermediate 
susceptibility

Susceptible*

Candida tropicalis Susceptible Susceptible Susceptible Susceptible*

Candida parapsilosis Susceptible Susceptible Susceptible Susceptible to resistant*

Candida krusei Resistant Susceptible (dose dependent) 
to resistant

Susceptible to intermediate 
susceptibility

Susceptible

Candida kefyr Susceptible Susceptible Susceptible Susceptible

Candida lusitaniae Susceptible Susceptible Susceptible to resistant Susceptible*

Candida dubliniensis Susceptible to resistant Susceptible Susceptible Susceptible

Candida rugosa Very low activity Low activity Susceptible Susceptible

Candida guilliermondii Low activity Susceptible Susceptible Susceptible

Trichosporon species

Trichosporon asahii Low activity Susceptible Resistant Resistant

Trichosporon beigelii (cutaneum) Low activity Low activity Resistant Resistant

Rhodotorula species Very low activity Variable susceptibility/
very low activity

Susceptible Resistant

Non-neoformans cryptococcus species

Overall Low activity Susceptible Susceptible NA

Cryptococcus laurentii Very low activity NA Susceptible* Resistant

Other uncommon yeasts

Geotrichum species Variable susceptibility Susceptible Susceptible NA

Hansenula anomala Fluconazole: low activity; 
itraconazole: very low activity

Susceptible Susceptible Susceptible

Malassezia species Fluconazole: low activity; 
itraconazole: susceptible

Susceptible Variable susceptibility NA

Saccharomyces species Low activity/variable 
susceptibility

Susceptible Susceptible NA

Resistant was defi ned as less than 40% of isolates tested reported as active. Susceptible was defi ned as more than 90% of isolates tested reported as active. Low activity was 
defi ned as 60–89% of isolates tested reported as active. Very low activity was defi ned as 40–59% of isolates tested reported as active. NA=data not available. *Susceptible but 
resistance reported after exposure (ie, breakthrough infections).

Table: Activity of diff erent antifungal drugs against emerging yeasts
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risk for systemic rhodotorula infection. Patients who 
have had abdominal surgery, cirrhosis, autoimmune 
diseases, or burns are also at risk.45

Rhodotorula is a basidiomycetous yeast genus that 
produces carotenoid pigments (yellowish to red), 
multilateral budding cells, rudimentary pseudohyphae, 
and occasionally a faint capsule. Individual colonies 
are usually pink or coral in colour, yeast-like, smooth, 
and sometimes mucoid in appearance. Rhodotorula 
species are environmental fungi that can be found in 
soil, fresh water, fruit juice, and milk, or on shower 
curtains and toothbrushes.46,47

Previously regarded as non-pathogenic, Rhodotorula 
species have emerged as opportunistic pathogens with 
the ability to colonise and infect susceptible patients. 
Most cases of rhodotorula infection are fungaemia 
associated with catheters, endocarditis, and meningitis.45 
Non-systemic rhodotorula infections such as endoph-
thalmitis and peritonitis (usually associated with 
continuous ambulatory peritoneal dialysis) have been 
reported in immunocompetent patients.48–50

Rhodotorula species are susceptible to amphotericin 
and fl ucytosine in vitro, but not to fl uconazole or 
caspofungin; susceptibility to triazoles such as 
voriconazole is variable (table).51,52 Rhodotorula species, 
including R mucilaginosa (R rubra) and R glutinis, are 
often resistant to fl uconazole and voriconazole. 
Amphotericin is the antifungal agent of choice for 
treatment of rhodotorula infections.9

Non-neoformans cryptococcus species
Non-neoformans cryptococci are saprophytes and are 
rarely reported as human pathogens. However, sporadic 
cases of non-neoformans cryptococcal infections have 
been reported in immunosuppressed patients, 
especially those with advanced HIV infection and 
patients with cancer who are undergoing transplant 
surgery.53 Cryptococcus laurentii and Cryptococcus albidus 
cause 80% of cases. However, Cryptococcus curvatus, 
Cryptococcus humicolus, and Cryptococcus uniguttulatus 
have also been associated with opportunistic infections 
in human beings.53

Non-neoformans cryptococci are basidiomycete 
(encapsulated) yeasts that are prevalent worldwide and 
have been identifi ed from various environmental sources 
including air, soil, water, pigeon droppings, and foods 
such as cheese, milk, beans, and wine.

Cryptococcus species can colonise human beings 
through the respiratory and gastrointestinal tracts. In 
patients with impaired cellular immunity, such as HIV 
infection, Cryptococcus species can become opportunistic 
pathogens. Clinical manifestations are usually 
indistinguishable from those of C neoformans infections. 
The most common sites of infection are the bloodstream 
and CNS, followed by pulmonary sites and the skin, eyes, 
gastrointestinal tract, and peritoneum in patients 
receiving ambulatory peritoneal dialysis.53–57

Data for drug resistance in non-neoformans cryptococci 
are scarce, and are chiefl y based on information provided 
in case reports. Most clinical isolates are susceptible to 
amphotericin,53 but antifungal-resistant C laurentii strains 
have been reported in at least two patients who were 
previously exposed to this drug (table).55

Fluconazole and fl ucytocine have poor activity against 
non-neoformans cryptococci.9,53 Fluconazole resistance is 
more frequent in patients with previous exposure to 
azoles compared with azole-naive patients.53 Cryptococcus 
species are innately resistant to echinocandins.42

Other uncommon yeasts
Geotrichum species are a rare cause of invasive fungal 
infections in immunocompromised hosts. By contrast to 
the worldwide distribution of Trichosporon species, 
Geotrichum capitatum is predominantly found in Europe 
(particularly in Italy).6 Geotrichum occurs sporadically, 
chiefl y in patients with haematological disease and then 
most often in those with acute leukaemia.6 Geotrichum 
is a very similar yeast to trichosporon, and is reported 
widely in the environment, including in soil, water, 
plants, and as a human coloniser. Invasive fungal 
infections caused by Geotrichum species present as a 
bloodstream or disseminated infection,6 although 
pulmonary, CNS, hepatosplenic, and urinary tract 
involvement have been reported; central line involvement 
is rare. Few data for antifungal susceptibilities exist, but 
strains resistant to fl uconazole have been reported.58 In 
vitro, amphotericin and voriconazole are the most active 
antifungal agents, compared with the variable activity of 
fl uconazole, fl ucytosine, and itraconazole.59

Outbreaks of the Hansenula anomala (Pichia anomala) 
yeast have been reported in neonatal and paediatric 
intensive care units,60,61 surgical intensive care units,62 
and in immunocompromised patients,63 including as 
breakthrough invasive fungal infections.64 Incidence is 
low and distribution sporadic. This yeast is found 
associated with plants, soil, and fruit juices, but has been 
reported65,66 to produce transient human colonisation. It 
can cause a wide range of invasive infections, but 
fungaemia, especially in association with a central venous 
catheter, is most common.63,67 In vitro, amphotericin, 
fl uconazole, voriconazole, and caspofungin have activity 
against P anomala, although high drug concentrations 
were required for inhibition; conversely, itraconazole is 
poorly active against this yeast.68

Malassezia species are lipophilic yeasts that colonise 
the skin and can cause tinea versicolor (especially 
Malassezia globosa) and other dermatological disorders in 
immunocompetent patients, and folliculitis and catheter-
related invasive fungal infections in neonatal, paediatric, 
and immunocompromised patients (especially 
Malassezia furfur). Distribution of new cases is sporadic 
or associated with nosocomial outbreaks in patients in 
intensive care units, especially in paediatric settings. 
Typically, M furfur causes fungaemia that is related to 
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lipid infusion in immunocompromised patients, but the 
organism is often less virulent than are other fungal 
pathogens.69 In vitro, Malassezia species are susceptible 
to itraconazole, ketoconazole, and voriconazole;70 
susceptibility to amphotericin is variable.71

Fungaemia from Saccharomyces cerevisiae has been 
linked to use of live yeast capsules (called 
Saccharomyces boulardii), which are taken for prevention 
of diarrhoea associated with use of antibiotics and 
adjunctive therapy for diarrhoea associated with 
Clostridium diffi  cile.5 Patients at high risk of such 
fungaemia include those in intensive care units and 
those with central venous catheters. Nosocomial 
transmission can occur through airborne contamination 
or transmission from health-care workers to patients 
with indwelling central catheters.72 Clinical presentations 
include unexplained fever, fungaemia, sepsis, peritonitis, 
and endocarditis. Very few data are available for drug 
effi  cacy, but amphotericin and voriconazole seem to be 
active in vitro against S cerevisiae,73 whereas fl uconazole 
might be variable in activity (table).74

Multiple yeast infections
Patients at a high risk for fungal infection (eg, candida, 
aspergillus, and mucor) can have more than one occurrence 
concomitantly or successively. Use of antifungal agents 
selects for resistant pathogens, much the same as occurs 
in antibacterial resistance. Prolonged use of voriconazole 
for prophylaxis or treatment can result in breakthrough 
fungal infections such as mucormycosis.

Jensen and colleagues75 showed that mixed fungaemia 
occurred in 15 (3%) of 530 cases of fungaemia and 
C albicans was the most commonly isolated species 
(13 cases), followed by C parapsilosis (4), C tropicalis (2), 
C dubliniensis (2), C krusei (2), and S cerevisiae (1). Clinical 
presentation, risk factors, and outcomes for patients with 
mixed fungaemia were not diff erent from those of 
monomicrobial fungaemia.75 In a retrospective study76 of 
mixed candidaemia, C albicans and C glabrata was the 
most frequently reported combination. Although further 
discussion about this topic is beyond the scope of our 
review, clinicians should be aware of the possibility of 
multiple and breakthrough yeast and mould 
fungal infections.

Role of host status
Host and pathogen interactions are crucial in 
pathogenesis of invasive fungal infections. Traditionally, 
severity and outcomes from fungal infections are 
attributed to the pathogen’s capability to overcome host 
immune defence and infl ict tissue damage. However, 
whether host immunity is impaired, uncontrolled, or 
hyper-reactive aff ects the severity and outcome of 
invasive mycosis.77–79

Phagocytic cells (neutrophils and mononuclear 
phagocytes) are the eff ector cells of the innate immunity.80 
Neutrophils are crucial for the initial host response 

against candida. Neutrophils damage candida hyphae 
through oxidative and non-oxidative mechanisms. Thus, 
neutropenia is the main risk factor for disseminated 
candidosis. Equally, patients with abnormal neutrophil 
function (eg, chronic granulomatous disease) are at risk 
for invasive candidosis.81

Phagocytic cells of the lung (chiefl y denditric cells and 
alveolar macrophages) are the fi rst immune cells exposed 
to C neoformans on inhalation of the organism into the 
respiratory tract. Phagocytosis and exposure to soluble 
glycoantigens or fungal DNA ultimately lead to cytokine 
and chemokine release and yeast destruction. However, 
whether this initial innate immune response to 
C neoformans contributes to early clearance or the late 
development of adaptive immunity is unclear.82

Although local phagocytes (innate immune response) 
are fi rst to attempt to control fungal infection, cell-
mediated immunity (acquired immunity) is the major 
host defence mechanism (fi gure).81 Activation of naive 
T helper (Th0) cells will cause diff erentiation into very 
distinctive eff ector cells dependent on the cytokine 
environment. Historically, only Th1 and Th2 were 
described as the main two types of eff ector T cells, but 
new lineages of T cells (regulatory T cells [Tregs] 
and Th17) have been recognised as functionally diff erent 
subsets. Typically, the presence of interleukin 12 will 
polarise towards a Th1 response and interleukin 4 will 
induce a Th2 response. Several reports83–85 suggest that, 
in the presence of transforming growth factor β (TGFβ) 
and interleukins 6 and 23, Th0 will develop into Th17, 
and that in the presence of TGFβ alone (without 
interleukin 6) Th0 will promote polarisation toward a 
Treg response (fi gure).

For many years, host immune response to fungal 
infections was explained in terms of Th1 and Th2 
response, in which either pathway would elicit specifi c 
Th responses depending on the pathogen. Balance 
between Th1 and Th2 immune responses is crucial for 
determination of the severity and outcome in 
immunocompromised hosts with invasive fungal 
infections (eg, extended neutropenia and acute and 
chronic graft versus host disease).81 

Analysis of recent data suggests that Th17 is associated 
with extended infl ammation and defective clearance of 
fungi. In mice,79 interleukin 23 and Th17 were important 
negative regulators of the Th1 immune response against 
fungi. The Th17 pathway in particular was associated with 
an extended infl ammatory response and impaired 
pathogen clearance in candida and aspergillus infection. 
Zhang and colleagues86 showed that, in mice, a robust 
Th1 and Th17 immune response has an initial protective 
role in pulmonary clearance but was insuffi  cient to 
provide protection against lethal dissemination of 
C neoformans to the brain. These newly described immune 
regulatory pathways seem to have implications for 
pathogenesis of chronic mucocutaneous candidosis and 
intractable mould infections occurring after engraftment 
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in recipients of allogenic transplantations. A role has 
been suggested for Treg and Th17 pathways in the 
pathogenesis of immune reconstitution syndrome 
occurring in patients undergoing solid organ transplant87 
and haemopoietic stem cell transplant77 with invasive 
fungal infections.78 Research aimed at elucidation of 
future implications of these new pathways is in progress.

Diagnostic considerations
Diagnosis of emerging yeast infections depends largely 
on traditional microbiological culture and identifi cation 
methods and histopathology. Yeast fungaemia, 
especially that caused by Candida species, can be 
detected with blood cultures, although supplementation 
of lipids is usually required for growth of Malassezia 
species.88 Growth of Candida species from blood or 

normally sterile sites nearly always represents true 
infection and should be treated as such. However, 
growth of Candida species from non-sterile sites 
(ie, sputum, skin, and stool) often indicates colonisation 
or contamination. For instance, growth of Candida 
species in the urine must be interpreted in clinical 
context, including assessment of signs and symptoms 
consistent with a urinary tract infection and the 
presence of pyuria and other biochemical markers of 
urinary tract infection.89 Isolation of Candida species 
from many non-sterile sites may be an indicator of 
occult infection in high-risk patients;90,91 thus, diagnosis 
of invasive candidosis can be diffi  cult.

Several studies92–94 reviewed diagnosis of Candida species 
with techniques that are not reliant on culture. Because of 
the low sensitivity and specifi city of conventional assays for 

Figure: Helper-T-cell diff erentiation
Antigen recognition triggers naive T-cell activation and diff erentiation into distinctive eff ector cells depending on the cytokine environment, inducing the expression of specifi c transcript factors 
involved in Th-cell diff erentiation. Th=Helper T cell. TGF=transforming growth factor. ROR=RAR-related orphan receptor. Fox=Forkhead box. Treg=regulatory T cell.
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the detection of invasive fungal infections, new assays have 
been developed. These methods include antigen-detection 
systems, such as ELISA and molecular methods (ie, PCR 
assays). However, these techniques need to be assessed in 
large patient cohorts and are not standardised at present. 

(1,3)-β-D-glucan (BG), which is a unique cell-wall 
component of many fungi, can be detected and quantifi ed 
by use of a bioassay based on the horseshoe crab clotting 
cascade.95 In addition to detection of Candida species in 
serum samples, the BG test can detect aspergillus, 
fusarium, trichosporon, saccharomyces, and acremonium, 
but not cryptococcus or zygomycetes.96–98

Investigators assessed the clinical usefulness of the 
BG test in a multicentre study of 188 febrile patients 
with haematological malignant disease (167 patients) or 
other chronic  illness (21 patients). 41 (20%) of 
202 febrile episodes were caused by candida, 
cryptococcus, trichosporon, or aspergillus, and 59 (29%) 
were non-fungal in origin. 37 (90%) of 41 patients with 
fungal infections and none of the 59 patients with non-
fungal infections had positive BG tests.99 In a multicentre 
study100 of various patients (20·2% with haematological 
malignant disease), BG had a sensitivity and specifi city 
of 69·9% and 87·1% (BG cutoff  >60 pg/mL), respectively, 
for diagnosis of proven or probable invasive fungal 
infections (according to European Organisation for 
Research and Treatment of Cancer and Mycoses Study 
Group criteria). These diagnoses were mostly of candida 
infections, and some aspergillus, and the test had a 
sensitivity of 81·3% for candidosis (BG cutoff  
>60 pg/mL). As expected, the BG test was unable to 
detect mucor, rhizopus, and cryptococcus infections.

In a prospective study of 95 adult patients with acute 
lymphoblastic leukaemia, 30 cases of proven or prob able 
invasive fungal infections (15 candidosis, 13 aspergillosis, 
and two mixed) were diagnosed among 190 episodes of 
neutropenia.101 Overall sensitivity and specifi city of the BG 
test was 63% and 96%, respectively. In a range of other 
studies of patients with candidaemia with or without 
invasive candidosis, the BG test achieved a sensitivity 
of 58·0–93·3%, and a specifi city of 52·7–83·0%.102–105

The eff ectiveness of the BG test for patients in intensive 
care units is unproven. Although BG concentrations are 
raised in critically ill patients with established fungal 
infections, they are also raised in patients who have been 
in intensive care units for a long time.106

Thus, detection of fungal BG is potentially useful for 
diagnosis of invasive fungal infections in specifi c 
populations of patients, especially by use of serial serum 
BG testing for those with malignant haematological 
disease.104 However, substantial limitations of the BG test 
include its specifi city, since false-positive reactions can 
occur in various settings, and an inability to distinguish 
between fungal species.107 Therefore, BG testing is worthy 
of consideration as an adjunctive test for invasive fungal 
infections in patients with malignant haematological 
disease, but it needs refi nement.108

Controversies for treatment and prevention
Additional strategies to improve outcomes for patients 
with invasive fungal infections include use of 
immunomodulators and combination therapies. 
Adjunctive interferon γ might be indicated for refractory 
cryptococcosis.109 The role of interferon γ in invasive 
candidosis and other emerging yeast infections is 
undefi ned. Although combination therapy is well 
established for treatment of cryptococcal meningitis, its 
use in invasive candidosis is less clear. 
Combination therapy is recommended for candida 
endocarditis and other diffi  cult-to-treat presentations. 
Few data are available for other emerging opportunistic 
yeast infections, although combination regimens might 
be useful as salvage therapy.

Guidelines for management of central venous catheter 
infections with Candida species include 
recommendation of line removal when feasible.109 This 
approach is strongly recommended in non-neutropenic 
patients, or in infections caused by C parapsilosis, which 
is often associated with central venous catheter isation. 
In neutropenic patients, this recommendation is more 
controversial, as the candidaemia might originate from 
the gastrointestinal tract.110

Antifungal prophylaxis is recommended for high-
risk patients undergoing liver, pancreas, and 
small-bowel solid organ transplantations, for patients 
with chemotherapy-induced neutropenia, recipients of 
stem cell transplantation with neutropenia, and it 
can be considered for adults in intensive care units 
who are at high risk for invasive candidosis.109 
Standard use of anti fungal prophylaxis and therapy 
has probably shifted the epidemiological traits 
of invasive fungal infections to these emerging 
yeast infections.

Search strategy and selection criteria

We searched PubMed for articles published in English or 
Spanish between January, 1990, and March, 2010, with the 
terms “unusual yeasts”, “emerging fungal infections”, 
“non-albicans Candida”, “C. guilliermondii”, “C. krusei”, 
“C. parapsilosis”, “C. tropicalis”, “C. pseudotropicalis”, 
“C. lusitaniae”, “C. dubliniensis”, “C. glabrata”, “C. pelliculosa”, 
“C. kefyr”, “C. rugosa”, “C. famata”, “C. inconspicua”, 
“C. norvegensis”, “C. kefyr”, “C. orthopsilosis”, “C. metapsilosis”, 
“C. nivariensis”, “Trichosporon sp”, “Rhodotorula sp”, 
“non-neoformans cryptococcus species”, “Geotrichum sp”, 
“Hansenula anomala Malassezia sp”, “host immune response 
and fungal infections”, “(1,3)-beta-D-Glucan”, “IFN-γ and 
invasive candidiasis”, “antifungal agents”, “antifungal 
resistance”, “antifungal treatment”, “antifungal 
prophylaxis”, “adjunctive therapy” and “yeast infection” for 
studies on the epidemiologic, diagnostic and therapeutic 
aspects of emerging yeast infections. Review articles were 
excluded.
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Conclusions
Non-albicans Candida species and other rare yeasts are 
emerging as key opportunistic pathogens. Early and 
specifi c diagnosis is crucial, and the decision to treat a 
patient with these unusual infections is often based on 
little clinical and microbiological information. Treatment 
decisions need careful consideration of the institutional 
epidemiological factors and the immune status of the 
population at risk.
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